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Proteomics

Genomes, Proteomes, and the Central Dogma
Sarah Franklin, PhD; Thomas M. Vondriska, PhD

Systems biology, with its associated technologies of
proteomics, genomics, and metabolomics, is driving the

evolution of our understanding of cardiovascular
physiology. Rather than studying individual molecules or
even single reactions, a systems approach allows
integration of orthogonal data sets from distinct tiers of
biological data, including gene, RNA, protein, metabolite,
and other component networks. Together these networks
give rise to emergent properties of cellular function, and it is
their reprogramming that causes disease. We present

5 observations regarding how systems biology is guiding a
revisiting of the central dogma: (1) It deemphasizes the
unidirectional flow of information from genes to proteins; (2)
it reveals the role of modules of molecules as opposed to
individual proteins acting in isolation; (3) it enables discovery
of novel emergent properties; (4) it demonstrates the
importance of networks in biology; and (5) it adds new
dimensionality to the study of biological systems.
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Proteomics

Genomes, Proteomes, and the Central Dogma
Sarah Franklin, PhD; Thomas M. Vondriska, PhD

Abstract—Systems biology, with its associated technologies of proteomics, genomics, and metabolomics, is driving the
evolution of our understanding of cardiovascular physiology. Rather than studying individual molecules or even single
reactions, a systems approach allows integration of orthogonal data sets from distinct tiers of biological data, including
gene, RNA, protein, metabolite, and other component networks. Together these networks give rise to emergent properties
of cellular function, and it is their reprogramming that causes disease. We present 5 observations regarding how systems
biology is guiding a revisiting of the central dogma: (1) It deemphasizes the unidirectional flow of information from genes
to proteins; (2) it reveals the role of modules of molecules as opposed to individual proteins acting in isolation; (3) it enables
discovery of novel emergent properties; (4) it demonstrates the importance of networks in biology; and (5) it adds new
dimensionality to the study of biological systems. (Circ Cardiovasc Genet. 2011;4:00-00.)

Key Words: genomics � heart failure � proteomics

Arguably the greatest postmodern coup for reductionism
in biology was the articulation of the central dogma.1

Not since “humors” were discarded from medical practice
and logic and experiment instituted as the cornerstones of
physiology (which they remain today) had such a revolution-
ary idea transformed biology and enabled scientific inquiry.
Because of its simplicity, the central dogma has the tantaliz-
ing allure of deduction: If one accepts the premises (that DNA
encodes mRNA, and mRNA, protein), it seems one cannot
deny the conclusions (that genes are the blueprint for life). As
a result, the central dogma has guided research into causes of
disease and phenotype, as well as constituted the basis for the
tools used in the laboratory to interrogate these causes for the
past half century.

The past decade, however, has witnessed a rapid accumu-
lation of evidence that challenges the linear logic of the
central dogma. Four previously unassailable beliefs about the
genome—that it is static throughout the life of the organism;
that it is invariant between cell type and individual2–4; that
changes occurring in somatic cells cannot be inherited (also
known as Lamarckian evolution5); and that necessary and
sufficient information for cellular function is contained in the
gene sequence—have all been called into question in the last
few years. Revelations of similar scale have occurred in the
transcriptome, with the discovery of the ubiquity (and vari-
ety) of mRNA splicing.6 So too with the proteome, which has
undergone perhaps the most dramatic shift in understanding
as a result of the aforementioned changes to the transcriptome
and the genome, as well as by the explosion of technology
development that has enabled both quantitative and qualita-
tive analysis of large groups of proteins and their modifica-

tions in a single experiment. It is now clear that information
flows multidirectionally between different tiers of biological
information, of which genes, transcripts, and proteins consti-
tute only the most obvious 3.

The ostensible fourth step in the central dogma—how
molecules “encode” cells—clearly lacks the crystalline for-
mulas that relate DNA to protein. Although molecular details
have been revealed for thousands of cellular events, no model
exists that can explain how, for example, the modest eryth-
rocyte is formed without error �2 million times per second in
adult Homo sapiens. In contrast to a blueprint that can
perfectly describe how to assemble a motorcycle or to build
a city, we lack the knowledge to explain how a cell forms
with correct processes operational, cellular structures formed,
and signaling mechanisms in place. It is in attempting to
extend the central dogma beyond proteins that one realizes
the logic of biological systems and engineered ones are
fundamentally different.7 Just as the central dogma did for the
investigation of basic and medical biological problems, a new
synthesis for how cells form and function will result in
philosophical shifts in research, as well as technological
breakthroughs to enable it.

The purpose of the present work is to emphasize the
contribution of proteomics and systems biology to extend-
ing the central dogma (Figure 1). Whenever possible,
studies from the cardiovascular literature are used to
highlight conceptual and technical breakthroughs. Excel-
lent reviews exist on novel means of quantifying the
proteome,8,9 methods to analyze posttranslational modifi-
cations,10,11 cardiovascular diagnosis,12–14 and organelle
proteomics15–17; however, these areas are not the purview
of the present work.
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Proteomics as a Tool in Systems Biology
Whether systems biology as a discipline differs other than in
semantics from physiology is worthy of the briefest clarifi-
cation. It is our contention that the principal difference is the
greater abundance, and higher rate of accumulation, of data in
the former. Although both concern themselves with the
physical and chemical parts of a biological system and focus
on revealing the oft-referenced mechanisms underlying phe-
notype, systems biology has been enabled by the develop-
ment of “-omics” technologies over the past 15 years. The
sheer magnitude of data accumulated in studies of the
genome, transcriptome, metabolome, proteome, and so forth
not only demanded a greater computational infrastructure for
interpretation but simultaneously revealed new dimensional-
ity within tiers of biological information (witness the
genome-wide association studies and unsupervised clustering
of gene and protein expression data from high-throughput
studies). Physiologists long ago appreciated the utility of
simple engineering principles to model biological systems—
the giant squid axon studies of Hodgkin and Huxley, as well
as Guyton’s stunning mathematical (control theory) descrip-
tion of the brain and cardiovascular system come to mind—
but the importance of mathematical biology has become
pervasive in systems biology for interpretation (that is,
bioinformatics) and hypothesis generation by modeling
(wherein mathematical models become stand-alone entities
that make predictions about future experiments). A hallmark
of systems biology is the integration of large sets of data from
measurements made on different tiers of the central dogma in
the same experiment, to reveal emergent properties of the

biological entity (Figure 2). Systems biology relies on the
interplay between hypothesis- and discovery-driven research,
and proteomics enables both these approaches.

Proteomics has traditionally concerned itself with catalog-
ing proteins in different cells and tissues, with an increasing
focus of late on organelles. Although this process has also
been reviewed in greater depth elsewhere, it is important to
note the conceptual advancement enabled by proteome maps.
The first is the ability to navigate these maps, as proposed by
Aebersold and colleagues,9 for which the current state of the
art is directed mass spectrometry approaches (selected/mul-
tiple reaction monitoring experiments). This is now possible
across the full dynamic range of expressed proteins in
nonmammalian eukaryotes.18 Fortunately, generation of maps
to guide this type of navigation is well under way for multiple
organelles in the mammalian heart, most notably the mito-
chondria19–23 but also the nucleus20,24 and proteasome.25 In
virtually all cases, these maps have been generated by
semiquantitative (or in some cases, nonquantitative) tandem
mass spectrometry, in which proteins extracted from purified
organelles are separated intact and digested (usually by
trypsin) to peptides, which are then separated by liquid
chromatography and introduced into the mass spectrometer
by electrospray. The tandem mass spectra that result from
these experiments are then searched against a protein data-
base to make identifications. These studies constitute the
maps with which selected/multiple reaction monitoring ex-
periments may now explore and quantify mammalian cardiac
proteomes.

Second, the conceptualization of proteomes as functional
units of cellular phenotype has enabled researchers to analyze

Figure 1. Role of proteomics in systems biology. The advent of reproducible and high-accuracy genomic and proteomic instrumenta-
tion has enabled characterization of distinct types of gene, RNA, and protein networks. In many cases, quantitative data collected at
fixed intervals after a stimulus (or, for example, during the development of disease) allow for dynamics of processes to be determined
and for functional relationships in networks to be revealed. These technologies are fundamentally dependent on rigorously character-
ized models of disease (or human samples with extensive clinical data) to allow bioinformatic analyses to extract statistically significant
relationships within and between large proteomic and genomic data sets. Mathematical modeling allows these observations to make
predictions about behaviors underlying the system. The ultimate goal is to understand the relationships between different cellular net-
works (here the genome and proteome are represented; see also Figure 2) during health, such that we can engineer strategies to repro-
gram these network-network relationships therapeutically. PTM indicates posttranslational modification.
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them as protagonists of cellular function, as well as readouts
for the actions of other tiers. The measurement of proteomes
as readouts of cardiac function is now widely used, and
rigorous standards have been established for the evaluation of
mass spectrometry data. Such a framework has been essential
to allow proteomic investigations to yield biologically and
clinically relevant insights. In the realm of signaling, expres-
sion profiling proteomics have been used in the heart to study
targets of type 5 adenylyl cyclase26 and the role of the
mitochondria27,28 or matrix metalloproteinases29 in cardiac
ischemia and protection, as well as to study direct kinase
targets important for cardiac phenotype,30,31 to name only a
few examples in what is now a rapidly growing body of
literature.

Where proteomes as readouts have the greatest potential to
enhance our understanding of cardiac function is when
simultaneous measurements are made on other tiers of bio-
logical information or when proteomic data are integrated
with rigorous gain- and loss-of-function approaches. Both are
discussed in greater detail below; the former is still quite a
nascent field in the heart, although some progress has been
made with coupled transcriptomic and proteomic analysis of
cardiac protection.32 In one example of the latter approach,
Ago and colleagues33 used targeted proteomics to identify
novel regulatory mechanisms that would have been virtually
impossible to discover with traditional laboratory biochemis-
try approaches. The investigators used mass spectrometry to
identify specific oxidized residues on HDAC4 that alter its
nuclear-cytoplasmic partitioning in the setting of hypertrophy
and revealed that thioredoxin counteracts this process by
reducing these residues. In this study, the use of proteomics to
identify novel modified residues facilitated the use of reduc-
tionist approaches (genetic and pharmacological) to test
causality, which highlights the powerful interplay of
discovery-based and hypothesis-driven approaches.

The challenge is to shift the focus from proteomes as
readouts to measuring them as the active agents of biological

function. To use proteomics to reveal basic mechanisms of
disease, one is, in essence, trying to develop a molecular
ECG, an emergent property of the system that will allow us to
diagnose the health of the cell. All of the proteins that
influence the ECG are not known; however, we need not have
a perfect understanding of all the factors that contribute to the
network of molecules as long as we can quantify its existence
and demonstrate its linkage to phenotype in a reproducible
manner. The objective of a complete static wiring diagram for
a biological system is incomplete, because biological systems
defy the linear logic of those engineered by humans.

Network Biology: Insights From Proteomics
Types of Biological Networks
There has been an explosion in the last decade in our
understanding of the role of networks in all aspects of
biology. Several excellent reviews on the properties of
networks and how they relate to cell biology exist34–36;
herein, we will only highlight what we see as a few critical
considerations for network logic in the interpretation of
proteomic and genomic data and highlight how these data in
turn are affecting the study of networks.

Although active debate continues about the most accurate
mathematical representation of biological networks (whether,
for instance, their structures are scale-free or exponential, and
the importance of local versus global features), there is almost
universal agreement that network structure is nonrandom and
plays a fundamental role in how information is processed and
decisions are made in the cell. How nodes (or individual
features) are linked (also known as edges) to each other
reveals core features about the network, including how a
signal is transmitted, whether it is amplified or dampened, the
relative importance of individual nodes versus that of groups
of nodes, and the dynamic processes that the network can
perform. Topology, or how the network is organized, deter-
mines the local and global structural features, which, when
dynamics are incorporated, include the emergence of feed-

Figure 2. Evolution of the central dogma. As
described in the text, a new synthesis of the cen-
tral dogma is emerging in which different networks
constitute each tier and information moves within
and between the networks without strict direction-
ality (see Table).
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back and feedforward motifs (both excitatory and inhibitory),
as well as threshold behavior and biological memory.37–39

Indeed, most “-omics” studies to date have used only static
data representations to produce networks. The limitation of
this approach is that cellular behavior results from dynamic
properties of the network that cannot be appreciated from the
static topology.

A fundamental defining feature of biological networks is
whether they are physical or functional. In a physical net-
work, the nodes are connected to each other directly or
indirectly in a physical manner, an obvious example being a
protein interaction network, in which the proteins are the
nodes and the links exist between proteins that bind to each
other. Information flowing through such a network is also
physically defined (and physically relayed in a direct man-
ner). In the same example, this could include one protein
posttranslationally modifying another or otherwise directly
altering its activity. Physical networks can also exist between
different types of biological molecules, for instance, the
network defined by the genes whose promoters are bound by
a transcription factor. Again the network is physical so long
as the given protein directly binds to an individual gene;
information flows through this network in the form of
alterations in gene expression (although the actual process of
altering gene expression likely does not arise from the
solitary act of a protein binding a DNA sequence, and thus,
this example is instructive of how a physical network then
becomes a functional one). Functional networks, or influence
networks, are those in which nodes are connected by virtue of
their ability solely to influence each other, without implica-
tion (or at least without direct evidence) of physical interac-
tion between the nodes. Simply put, a link in an influence
network means that the 2 nodes affect each other in some
manner and/or participate in some shared process in the cell.
Moving from the previous gene expression example, the
protein transcription factor is unlikely to be sufficient to
express a gene: It must bind to DNA and/or histones and
recruit other factors, notably RNA polymerase II, to initiate
transcription. Some of these nodes interact directly, whereas
others clearly are connected only through influence. The most
extensively studied influence networks are gene coexpression
networks, in which genes (nodes) are connected if their
expression behavior is similar before or after an intervention.
Clearly, there could be scores of intermediate physical links,
not directly measured in a microarray or RNA sequencing
study, that influence the connection between 2 nodes in such
a network. In the cardiac realm, several proteomic and
genomic investigations have revealed both physical31,40 and
functional41,42 networks relevant for heart function (to cite
just a few examples).

Network-Network Interactions
Like proteins and genes, molecular networks are intercon-
nected and interdependent. Information flows between net-
works, and one must integrate distinct data sets to represent a
complete picture of how the cell functions. Several recent
studies are illustrative of this point.

Lage and colleagues43 used multiple forms of data, includ-
ing protein interaction studies and phenotype-linked muta-

tional studies on individual genes, to construct networks that
control specific processes in different anatomic locations of
the heart. The result was a systems-level view of the networks
underlying spatial (in terms of within the organ) and temporal
development of the prenatal myocardium. The multidimen-
sionality of the data analysis allowed the investigators to
extract features of these networks, such as the relationship
between protein module complexity and protein/transcript
abundance, which would escape appreciation if intuition
alone were used to evaluate the data. Furthermore, the
networks examined in this study included physical networks
based on published protein interactions and functional net-
works based on shared involvement in different stages or
features of embryonic heart formation.

An intuitive example of obligatory symbiosis between tiers
of biological molecules is the eukaryotic genome, defined
herein as the DNA molecules and the chromatin structural
proteins that constitutively bind to them. The packaging of
DNA in the nucleus can be understood on the basis of the
following structural hierarchy: A segment (�146 nucleotides
in length) of the double helical DNA molecule wraps around
a protein complex that contains 2 copies each of 4 core
histones (H2A, H2B, H3, and H4), which constitutes a
nucleosome; this octomeric, DNA-bound protein complex in
turn forms higher-ordered structures of less well-defined
architecture through interactions with linker histones (like
H1) and other chromatin structural proteins (such as high-
mobility group proteins). These chromatin domains deter-
mine the overall shape and presentation of each individual
chromosome. Although the organization of these DNA-
protein complexes—the chromosomes—during cell division
is well established, and extensive work has been done to
characterize changes in nucleosome positioning, there exists
no dogma articulating how chromatin structure regulates gene
expression. To address this issue, an adaptation of conven-
tional 3C (chromosomal conformation capture), a technique
that allows determination of physical proximity of specific
genetic loci in 3 dimensions, was used to map the physical
arrangement of entire genomes in intact interphase nuclei.
This approach was applied separately to human44 and yeast45

genomes to reveal that the 3-dimensional structure of the
genome resembles a fractal globule, a structure that has
several desirable features, such as nonoverlapping segments
and modular architecture, both of which would facilitate
differential accessibility by transcription factors.46 Although
elegant, this model is incomplete in that it cannot account for
differential modification of this genome structure in different
cell types and within the same cell under varied transcrip-
tional states. Furthermore, little is known about how these
interesting observations from noncardiac systems will be
examined in the setting of the heart, with its inherent
challenge of heterogeneity in terms of cell type. Extensive
work has been conducted, including in the heart, to show how
various classes of proteins modulate chromatin accessibility
and thereby gene expression (including but not limited to
histone deacetylases/histone acetyltransferases, high-mobility
group proteins, lysine and arginine methyltransferases/dem-
ethylases, kinases/phosphatases, and chromatin remodeling
proteins47,48). Importantly, recent reviews have highlighted
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critical considerations for analyzing these types of networks
(ie, those involving DNA and protein), including how to
capture discrete molecular details of genetic circuits, and
considerations for distinguishing specificity and affinity in
studying regulation.49 However, these studies have yet to
reveal an invariant relationship between structure and func-
tion. There is no code that can account for how the hierar-
chical structure of DNA and proteins establishes the complex
genomic regulatory programs that exist in distinct differenti-
ated cells, as there is to explain, for example, how DNA
encodes RNA and RNA, protein.

Other work has recently advanced our view of the land-
scape of genomic regulation by networks of proteins in the
eukaryotic nucleus. One recent study demonstrated the power
of combining proteomic and genomic approaches to reveal
insights into both physical and influence networks on a large
scale. Using a modified histone-derived peptide as bait,
potential chromatin modifiers were identified by subsequent
mass spectrometry analysis.50 The genome-wide localization
of select members of this group was then mapped by
chromatin immunoprecipitation followed by DNA sequenc-
ing. The core insight from this study was at the level of 2
types of networks and their integration in the setting of the
activation or inhibition of gene expression, as dictated by the
respective histone posttranslational modifications. An inno-
vative approach to use protein influence networks to define
genomic influence networks also comes from the realm of
chromatin regulation.51 A sizable group (53) of chromatin-
binding proteins with known genome occupancy profiles but
with no preconceived relationship to each other were se-
lected. The occupancy profiles were used to discriminate 5
domains of chromatin based on principal component analyses
(in brief, regions where the proteins had similar occupancy
across the genome were defined as functional domains). As a
result, all loci were assigned to 1 of these 5 exclusive
chromatin types, thus constituting a previously unrecognized
influence network. Importantly, these genomic features do
not reveal themselves on the basis of a single DNA sequence
feature, posttranslational modification, or bound protein; it is
only through the combination of proteins bound to a given
region that the features of this genome-proteome interaction
emerge. A third study undertook a massive analysis that
combined published data and RNA interference screens to
identify a list of target proteins that were subsequently
engineered with green fluorescent protein or tandem affinity
tags and used for microscopy-based localization or affinity
purification and mass spectrometry analysis, respectively.52

This is a noteworthy example of unbiased, discovery-based
analysis of a system. In addition, the combination of ap-
proaches gave physical information on protein interactions
and anatomic reference within the context of an intact cell.
The result was a phenotype and function-linked catalog of
chromosomal segregation proteins that regulate mitosis in
mammalian cells.

Literature on protein interaction networks is extensive, and
this remains an area of active technology development in
proteomics. An important and potentially obfuscated consid-
eration for these studies is that virtually all protein interaction
data are recovered in a binary manner, in which knowledge

on levels of interactions, if present, is lost, along with insights
into whether interactions are persistent or fleeting. This issue
was addressed in a novel way by a recent report that focused
on structural features of the individual proteins,53 such as
disordered regions, protein interaction domains, and states of
activation. High-throughput heterologous systems such as
yeast 2-hybrid assays and tandem affinity purification tagging
in Escherichia coli are not amenable to fine-tuning experi-
mental conditions to capture distinct types of protein interac-
tions, and thus, much of this information needs to be
recovered by repeat experimentation in different systems (eg,
reciprocal purification) or by an alternative method such as in
situ colocalization.

As a final example for this section, consider a study in
which numerous types of experiments were performed to first
generate and then explore hippocampal neuronal networks.54

In this study, the nodes were primarily proteins, and the edges
included direct interactions (as in protein complexes), signal
transduction (indirect or imperfectly defined interactions),
ligand-receptor binding, enzymatic activity, and common use
of cofactors. This analysis revealed signaling motifs that
conferred distinct behavior and could account for many of the
higher-level phenotypic properties of neurons that individual
proteins, or simple “pathways,” could not. Furthermore, the
use of graph theory to investigate the role of local and global
connectivity in the flow of information through networks
allowed the large data sets to yield meaningful insights into
specific cellular processes. Similar integrated models have
been developed and explored for the cardiac myocyte,55–57

which, like the neuron, offers itself to representation based on
electric engineering principles.

How Do Biological Networks Form?
We would like to briefly address the following paradox with
regard to the formation of cellular networks: Unlike any other
networks (including human interactions, the Internet, trans-
portation, power grids, computers, predator-prey interactions,
and so forth), cellular networks appear to inherently require
the absence of flexibility in their formation. This statement
requires some clarification. On the one hand, cellular net-
works are infinitely flexible after they are formed (that is, in
a normally functioning cell); this is the observation we are all
well aware of and that is commonly written off as the large
degree of redundancy in cellular networks. However, inflex-
ibility appears to be a requirement during the formation of the
network. We must refute the hypothesis that formation of
networks during the birth of a cell is a deterministic event if
we wish to claim that variability exists in the formation of
these networks. Although the response to a given stimulus in
an existent network may be enacted by more than 1 mecha-
nism (illustrating the so-called redundancy), the network
allowing for this occurrence must, if we reason the response
was nonrandom and reproducible, harbor properties that
specifically produce this behavior. The presence of such
properties suggests emergent control in the formation of the
network in addition to emergent control of its function once
formed. How can this emergence be measured rather than just
observed? An enigma in biology is how a cell with (at least)
thousands of proteins can reproducibly form and behave in
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the same manner without central control. This argument
means 1 of 2 explanations must be true: Either there is an as
yet unknown process that governs invariant formation of
networks, or biological networks are not invariant (eg, the
precise structure and/or means of formation of a protein
interaction network in 2 cells can differ). Clearly, we must
return to the laboratory to resolve this issue. An experiment to
resolve this issue would be one in which a given network (eg,
gene expression or protein expression) was mapped multiple
times in distinct sets of the same cells without pooling the
data between the individual technical replicates. If sufficient
resolution was achieved (which is now possible because of
next-generation nucleotide sequencing58 and high-mass-
accuracy mass spectrometers9 and other techniques59), algo-
rithms could be devised to distinguish noise from true
variation in the system. A simulation of how much noise
should result from the known limits of the instrumentation
when compared with the data resultant from said experiment
would reveal whether there is detectable variation in the
architecture of the networks in multiple copies of the same
cell. If sufficient variation existed between distinct samples of
the same network, this observation would refute the hypoth-
esis that architecture of molecular networks is invariant.

Specific Challenges for Cardiac Proteomics
As with any cell or organ, the challenges with proteomic and
genomic dissection mirror the unique physiology of the
system. Four prescient challenges for cardiovascular pro-
teomics are the contribution of distinct cell types, distinguish-
ing between primary and secondary effects, determining what
aspects of endogenous remodeling are beneficial versus
harmful, and the availability of healthy human samples.

The heart’s reason for existence is to pump blood; hence,
the cells of primary interest in this objective are the cardiac
myocytes. Experimental harnessing of cardiac-specific ge-
netic manipulation has enabled extensive analysis of in vivo
roles for individual proteins in cardiac myocytes.60,61 The
result has been an astounding advancement in our under-
standing of cardiac cellular networks62,63 from the standpoint
of adding or removing individual nodes. What we currently
lack is the ability to manipulate the roles of individual
proteins in the many other cell types that constitutively
populate the heart (such as vascular smooth muscle, endothe-
lial cells, and fibroblasts64) along with those that are tran-
siently recruited there in the setting of stress (macrophages,
for example). Furthermore, the specialized cells in numerous
vascular beds no doubt establish distinct networks that carry
out their unique physiology; for example, compare cardiac
microvascular endothelial cells to those from the gut or
kidney, and then to those commonly used for large-scale
analyses, which arise from the aorta. These challenges inher-
ently impact proteomic and genomic interrogation of the
heart, in that one must examine the heart in toto, accepting
that information on cell type is lost, or fractionate the cell
populations ex vivo before analyses, accepting in this sce-
nario the unpredictable modifications to gene and protein
abundance/modification that will occur during the time-
consuming isolation process. The reality, in our opinion, is
that both approaches must be pursued and that this will

remain the case for the foreseeable future. Many groups are
making progress in identifying cell-type–specific markers
that may enable comprehensive cell sorting in the future, but
even in this case, concerns about ex vivo measurements will
remain.

How does one distinguish primary and secondary effects
when the organ systems (and ergo, the proteomes) of heart
and vasculature are linked in health and disease (as is true of
all vascularized organ systems)? Conditions of atherosclero-
sis, myocardial ischemia, cardiac hypertrophy, and heart
failure are interrelated in the clinical setting and are amenable
to individual dissection only in experimental models. As with
cell-type specificity, the roles of heart and vascular proteomes
in distinct disease can only be revealed from a divide-and-
conquer strategy at the present time, one that uses an
experimental model that allows disease to develop with heart
and vasculature in normal apposition, dissects out (literally)
the roles of different cells, and then uses the method of
systems biology (Figure 1) to reassemble the insights into a
coherent model. In the future, real-time and in vivo imaging
techniques (such as positron emission tomography and mag-
netic resonance imaging), along with specific probes (the
design of which must be guided by the insights from
proteomics), will allow for nondestructive analysis of the
cardiovascular system, but at present, these techniques are in
their infancy with regard to molecular-level resolution.

A third major challenge is decoding the natural remodeling
that occurs after stress to the heart and vasculature to separate
the nefarious processes (to be targeted for inhibition) from
those that are protective (to be engineered for enhancement).
This challenge, too, is not unique to proteomic and genomic
studies but takes on an acute problem of scale when one is
faced with a mountain of experimental data. The more
sensitive the instruments become, the greater this challenge
will be. Again relying on the method for systems analyses,
the genetic models created in the field, many of which have
been characterized to have ostensibly normal physiology until
presented with cardiovascular stress, can be used to distin-
guish (in the proteomic/genomic data) true drivers of the
pathological phenotypes from general stress-response mole-
cules. This knowledge in turn allows our maps of proteomic
and genomic networks to encapsulate more details and to
become more perfect representations of biological processes.

Lastly, there is, for obvious reasons, a lack of healthy
human cardiac and specialized vascular tissue. There are no
grounds to posit that fundamental processes do not differ in
the human heart compared with the model systems commonly
used experimentally (most frequently, the mouse). Thus, we
ultimately must develop the means to characterize via pro-
teomics and genomics both the healthy and diseased adult
human myocardium, the way we can today with echocardi-
ography, so as to track the deterioration or recovery of cardiac
proteomes. A promising avenue to overcome this challenge is
guided differentiation of embryonic or adult stem cells into a
cardiac lineage, and some genomic studies on these cells have
already emerged.65,66 Much work clearly remains before these
cells can be labeled bona fide cardiac cells, including sorting
out to what extent an apparently reprogrammed phenotype
completely recapitulates the appropriate epigenetic state,67

6 Circ Cardiovasc Genet October 2011

balt2/hcg-hcg/hcg-hcg/hcg00511/hcg0300-11a sawantp S�5 9/20/11 22:41 4/Color Figure(s): F1–2 Art: 957795 Input-ptp

 at University of Utah on August 12, 2013http://circgenetics.ahajournals.org/Downloaded from 

http://circgenetics.ahajournals.org/


but rapid progress is being made in this area and may be
combined in the future with proteomics and in vivo labeling
techniques (as described above) to develop a signature for
cardiac health and disease in humans.

Conclusion: Impact of Recent Advances in
Systems Biology on the Central Dogma

The aforementioned advances in proteomics and network
biology are driving the evolution of our understanding of the
central dogma of molecular biology. In addition to the
increasingly appreciated role of non–protein-coding RNA in
biological function, next-generation sequencing is ushering in

a new generation of proteomics, in which we will have the
ability to measure whether (and if so, how) variation propa-
gates from genome to proteome, affecting function. Because
proteomic experiments are, in the majority of cases, still
dependent on DNA/mRNA sequence, the availability of
multiple genomes from a given species will dramatically
increase the search space and dimensionality of proteomics.
In a recent study, Pelak and colleagues2 sequenced 20 human
genomes, identifying on average 165 unique protein-
truncating variants in each genome; likewise, the preliminary
report of the 1000 Genomes Project suggests variation on a
similar scale, with �250 to 300 genes per individual being
different from the reference genome.4 It is likely that we will
have the sequences of 100 000 to 1 million human genomes
in the next few years, and if these estimates of interpersonal
variation are demonstrated in larger populations, this would
mean potentially hundreds of millions of additional protein
variants solely on the basis of genome variation. These data
analysis challenges will make today’s bioinformatic loads
seem paltry by comparison.

In closing, we identify 5 ways in which “-omics” technol-
ogies are changing basic and clinical research and contribut-
ing to a revisiting of the central dogma (Table): First, by
deemphasizing the unidirectional flow of information (ie,
DNA to RNA to protein; Figure 2, top); second, by placing an
emphasis on modules68–70 of genes/proteins/molecules rather
than individual factors; third, by enabling the discovery and
quantification of emergent properties present at different
scales of information71; fourth, by revealing the role of
networks in biological function; and fifth, by allowing for
new dimensionality in the analysis of all biological molecules
(Figure 2, bottom).

The greatest present challenge for biology is the limit of
reductionism. The term systems biology itself underscores our
linguistic circumscription of this problem. A system, no
matter how complex, is a defined entity; it is a human
creation. We conceptualize an evolvable central information
unit that describes (and orchestrates) the piecewise assembly
of the machine that is a cell. We conceptualize watches, even
if we shun the watchmaker.
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